These are the basic Unicode object types used for the Unicode implementation in Python:
Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing extensions or interfaces.
The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode objects:
Return true if the object o is a Unicode object or an instance of a Unicode subtype.
Changed in version 2.2: Allowed subtypes to be accepted.
Return true if the object o is a Unicode object, but not an instance of a subtype.
New in version 2.2.
Return the size of the object. o has to be a PyUnicodeObject (not checked).
Changed in version 2.5: This function returned an int type. This might require changes in your code for properly supporting 64-bit systems.
Return the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObject (not checked).
Changed in version 2.5: This function returned an int type. This might require changes in your code for properly supporting 64-bit systems.
Clear the free list. Return the total number of freed items.
New in version 2.6.
Unicode provides many different character properties. The most often needed ones are available through these macros which are mapped to C functions depending on the Python configuration.
These APIs can be used for fast direct character conversions:
To create Unicode objects and access their basic sequence properties, use these APIs:
Create a Unicode Object from the Py_UNICODE buffer u of the given size. u may be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into the new object. If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting Unicode object is only allowed when u is NULL.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Return the length of the Unicode object.
Changed in version 2.5: This function returned an int type. This might require changes in your code for properly supporting 64-bit systems.
Coerce an encoded object obj to an Unicode object and return a reference with incremented refcount.
String and other char buffer compatible objects are decoded according to the given encoding and using the error handling defined by errors. Both can be NULL to have the interface use the default values (see the next section for details).
All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.
Shortcut for PyUnicode_FromEncodedObject(obj, NULL, "strict") which is used throughout the interpreter whenever coercion to Unicode is needed.
If the platform supports wchar_t and provides a header file wchar.h, Python can interface directly to this type using the following functions. Support is optimized if Python’s own Py_UNICODE type is identical to the system’s wchar_t.
Create a Unicode object from the wchar_t buffer w of the given size. Return NULL on failure.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied (excluding a possibly trailing 0-termination character). Return the number of wchar_t characters copied or -1 in case of an error. Note that the resulting wchar_t string may or may not be 0-terminated. It is the responsibility of the caller to make sure that the wchar_t string is 0-terminated in case this is required by the application.
Changed in version 2.5: This function returned an int type and used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the following functions.
Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have the same semantics as the ones of the built-in unicode() Unicode object constructor.
Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system calls should use Py_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as read-only: On some systems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes setlocale).
Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).
The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.
These are the generic codec APIs:
Create a Unicode object by decoding size bytes of the encoded string s. encoding and errors have the same meaning as the parameters of the same name in the unicode() built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode the Py_UNICODE buffer of the given size and return a Python string object. encoding and errors have the same meaning as the parameters of the same name in the Unicode encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode a Unicode object and return the result as Python string object. encoding and errors have the same meaning as the parameters of the same name in the Unicode encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.
These are the UTF-8 codec APIs:
Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
If consumed is NULL, behave like PyUnicode_DecodeUTF8(). If consumed is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
New in version 2.4.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode the Py_UNICODE buffer of the given size using UTF-8 and return a Python string object. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode a Unicode object using UTF-8 and return the result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
These are the UTF-32 codec APIs:
Decode length bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:
*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian
If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or 1, any byte order mark is copied to the output.
After completion, *byteorder is set to the current byte order at the end of input data.
In a narrow build codepoints outside the BMP will be decoded as surrogate pairs.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
New in version 2.6.
If consumed is NULL, behave like PyUnicode_DecodeUTF32(). If consumed is not NULL, PyUnicode_DecodeUTF32Stateful() will not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
New in version 2.6.
Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written according to the following byte order:
byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian
If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single codepoint.
Return NULL if an exception was raised by the codec.
New in version 2.6.
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the codec.
New in version 2.6.
These are the UTF-16 codec APIs:
Decode length bytes from a UTF-16 encoded buffer string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:
*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian
If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe character).
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
If consumed is NULL, behave like PyUnicode_DecodeUTF16(). If consumed is not NULL, PyUnicode_DecodeUTF16Stateful() will not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
New in version 2.4.
Changed in version 2.5: This function used an int type for size and an int * type for consumed. This might require changes in your code for properly supporting 64-bit systems.
Return a Python string object holding the UTF-16 encoded value of the Unicode data in s. Output is written according to the following byte order:
byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian
If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is defined, a single Py_UNICODE value may get represented as a surrogate pair. If it is not defined, each Py_UNICODE values is interpreted as an UCS-2 character.
Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Return a Python string using the UTF-16 encoding in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the codec.
These are the “Unicode Escape” codec APIs:
Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string s. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode the Py_UNICODE buffer of the given size using Unicode-Escape and return a Python string object. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode a Unicode object using Unicode-Escape and return the result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
These are the “Raw Unicode Escape” codec APIs:
Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded string s. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode the Py_UNICODE buffer of the given size using Raw-Unicode-Escape and return a Python string object. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode a Unicode object using Raw-Unicode-Escape and return the result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by the codecs during encoding.
Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode the Py_UNICODE buffer of the given size using Latin-1 and return a Python string object. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode a Unicode object using Latin-1 and return the result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode the Py_UNICODE buffer of the given size using ASCII and return a Python string object. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode a Unicode object using ASCII and return the result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
These are the mapping codec APIs:
This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and decode characters.
Decoding mappings must map single string characters to single Unicode characters, integers (which are then interpreted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).
Encoding mappings must map single Unicode characters to single string characters, integers (which are then interpreted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).
The mapping objects provided must only support the __getitem__ mapping interface.
If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which map characters to different code points.
Create a Unicode object by decoding size bytes of the encoded string s using the given mapping object. Return NULL if an exception was raised by the codec. If mapping is NULL latin-1 decoding will be done. Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte values greater that the length of the string and U+FFFE “characters” are treated as “undefined mapping”.
Changed in version 2.4: Allowed unicode string as mapping argument.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode the Py_UNICODE buffer of the given size using the given mapping object and return a Python string object. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
Encode a Unicode object using the given mapping object and return the result as Python string object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
The following codec API is special in that maps Unicode to Unicode.
Translate a Py_UNICODE buffer of the given length by applying a character mapping table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is defined by the user settings on the machine running the codec.
Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
If consumed is NULL, behave like PyUnicode_DecodeMBCS(). If consumed is not NULL, PyUnicode_DecodeMBCSStateful() will not decode trailing lead byte and the number of bytes that have been decoded will be stored in consumed.
New in version 2.5.
Encode the Py_UNICODE buffer of the given size using MBCS and return a Python string object. Return NULL if an exception was raised by the codec.
Changed in version 2.5: This function used an int type for size. This might require changes in your code for properly supporting 64-bit systems.
The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the descriptions) and return Unicode objects or integers as appropriate.
They all return NULL or -1 if an exception occurs.
Concat two strings giving a new Unicode string.
Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.
Changed in version 2.5: This function used an int type for maxsplit. This might require changes in your code for properly supporting 64-bit systems.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.
Translate a string by applying a character mapping table to it and return the resulting Unicode object.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.
Join a sequence of strings using the given separator and return the resulting Unicode string.
Return 1 if substr matches str*[*start:end] at the given tail end (direction == -1 means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.
Changed in version 2.5: This function used an int type for start and end. This might require changes in your code for properly supporting 64-bit systems.
Return the first position of substr in str*[*start:end] using the given direction (direction == 1 means to do a forward search, direction == -1 a backward search). The return value is the index of the first match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.
Changed in version 2.5: This function used an int type for start and end. This might require changes in your code for properly supporting 64-bit systems.
Return the number of non-overlapping occurrences of substr in str[start:end]. Return -1 if an error occurred.
Changed in version 2.5: This function returned an int type and used an int type for start and end. This might require changes in your code for properly supporting 64-bit systems.
Replace at most maxcount occurrences of substr in str with replstr and return the resulting Unicode object. maxcount == -1 means replace all occurrences.
Changed in version 2.5: This function used an int type for maxcount. This might require changes in your code for properly supporting 64-bit systems.
Rich compare two unicode strings and return one of the following:
Note that Py_EQ and Py_NE comparisons can cause a UnicodeWarning in case the conversion of the arguments to Unicode fails with a UnicodeDecodeError.
Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.